3.94 \(\int \frac{\sqrt{c+d \tan (e+f x)} (A+B \tan (e+f x)+C \tan ^2(e+f x))}{a+b \tan (e+f x)} \, dx\)

Optimal. Leaf size=234 \[ -\frac{2 \sqrt{b c-a d} \left (A b^2-a (b B-a C)\right ) \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{c+d \tan (e+f x)}}{\sqrt{b c-a d}}\right )}{b^{3/2} f \left (a^2+b^2\right )}-\frac{\sqrt{c-i d} (i A+B-i C) \tanh ^{-1}\left (\frac{\sqrt{c+d \tan (e+f x)}}{\sqrt{c-i d}}\right )}{f (a-i b)}+\frac{\sqrt{c+i d} (i A-B-i C) \tanh ^{-1}\left (\frac{\sqrt{c+d \tan (e+f x)}}{\sqrt{c+i d}}\right )}{f (a+i b)}+\frac{2 C \sqrt{c+d \tan (e+f x)}}{b f} \]

[Out]

-(((I*A + B - I*C)*Sqrt[c - I*d]*ArcTanh[Sqrt[c + d*Tan[e + f*x]]/Sqrt[c - I*d]])/((a - I*b)*f)) + ((I*A - B -
 I*C)*Sqrt[c + I*d]*ArcTanh[Sqrt[c + d*Tan[e + f*x]]/Sqrt[c + I*d]])/((a + I*b)*f) - (2*(A*b^2 - a*(b*B - a*C)
)*Sqrt[b*c - a*d]*ArcTanh[(Sqrt[b]*Sqrt[c + d*Tan[e + f*x]])/Sqrt[b*c - a*d]])/(b^(3/2)*(a^2 + b^2)*f) + (2*C*
Sqrt[c + d*Tan[e + f*x]])/(b*f)

________________________________________________________________________________________

Rubi [A]  time = 1.08733, antiderivative size = 234, normalized size of antiderivative = 1., number of steps used = 12, number of rules used = 7, integrand size = 47, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.149, Rules used = {3647, 3653, 3539, 3537, 63, 208, 3634} \[ -\frac{2 \sqrt{b c-a d} \left (A b^2-a (b B-a C)\right ) \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{c+d \tan (e+f x)}}{\sqrt{b c-a d}}\right )}{b^{3/2} f \left (a^2+b^2\right )}-\frac{\sqrt{c-i d} (i A+B-i C) \tanh ^{-1}\left (\frac{\sqrt{c+d \tan (e+f x)}}{\sqrt{c-i d}}\right )}{f (a-i b)}+\frac{\sqrt{c+i d} (i A-B-i C) \tanh ^{-1}\left (\frac{\sqrt{c+d \tan (e+f x)}}{\sqrt{c+i d}}\right )}{f (a+i b)}+\frac{2 C \sqrt{c+d \tan (e+f x)}}{b f} \]

Antiderivative was successfully verified.

[In]

Int[(Sqrt[c + d*Tan[e + f*x]]*(A + B*Tan[e + f*x] + C*Tan[e + f*x]^2))/(a + b*Tan[e + f*x]),x]

[Out]

-(((I*A + B - I*C)*Sqrt[c - I*d]*ArcTanh[Sqrt[c + d*Tan[e + f*x]]/Sqrt[c - I*d]])/((a - I*b)*f)) + ((I*A - B -
 I*C)*Sqrt[c + I*d]*ArcTanh[Sqrt[c + d*Tan[e + f*x]]/Sqrt[c + I*d]])/((a + I*b)*f) - (2*(A*b^2 - a*(b*B - a*C)
)*Sqrt[b*c - a*d]*ArcTanh[(Sqrt[b]*Sqrt[c + d*Tan[e + f*x]])/Sqrt[b*c - a*d]])/(b^(3/2)*(a^2 + b^2)*f) + (2*C*
Sqrt[c + d*Tan[e + f*x]])/(b*f)

Rule 3647

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*
tan[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(C*(a + b*Tan[e + f*x])^m*(c + d
*Tan[e + f*x])^(n + 1))/(d*f*(m + n + 1)), x] + Dist[1/(d*(m + n + 1)), Int[(a + b*Tan[e + f*x])^(m - 1)*(c +
d*Tan[e + f*x])^n*Simp[a*A*d*(m + n + 1) - C*(b*c*m + a*d*(n + 1)) + d*(A*b + a*B - b*C)*(m + n + 1)*Tan[e + f
*x] - (C*m*(b*c - a*d) - b*B*d*(m + n + 1))*Tan[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, n}
, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && GtQ[m, 0] &&  !(IGtQ[n, 0] && ( !Intege
rQ[m] || (EqQ[c, 0] && NeQ[a, 0])))

Rule 3653

Int[(((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (
f_.)*(x_)]^2))/((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[1/(a^2 + b^2), Int[(c + d*Tan[e + f*
x])^n*Simp[b*B + a*(A - C) + (a*B - b*(A - C))*Tan[e + f*x], x], x], x] + Dist[(A*b^2 - a*b*B + a^2*C)/(a^2 +
b^2), Int[((c + d*Tan[e + f*x])^n*(1 + Tan[e + f*x]^2))/(a + b*Tan[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e,
f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] &&  !GtQ[n, 0] &&  !LeQ[n, -
1]

Rule 3539

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(c
 + I*d)/2, Int[(a + b*Tan[e + f*x])^m*(1 - I*Tan[e + f*x]), x], x] + Dist[(c - I*d)/2, Int[(a + b*Tan[e + f*x]
)^m*(1 + I*Tan[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0]
&& NeQ[c^2 + d^2, 0] &&  !IntegerQ[m]

Rule 3537

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(c*
d)/f, Subst[Int[(a + (b*x)/d)^m/(d^2 + c*x), x], x, d*Tan[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, m}, x] &&
NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && EqQ[c^2 + d^2, 0]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 3634

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_.)*((A_) + (C_.)*
tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Dist[A/f, Subst[Int[(a + b*x)^m*(c + d*x)^n, x], x, Tan[e + f*x]], x]
 /; FreeQ[{a, b, c, d, e, f, A, C, m, n}, x] && EqQ[A, C]

Rubi steps

\begin{align*} \int \frac{\sqrt{c+d \tan (e+f x)} \left (A+B \tan (e+f x)+C \tan ^2(e+f x)\right )}{a+b \tan (e+f x)} \, dx &=\frac{2 C \sqrt{c+d \tan (e+f x)}}{b f}+\frac{2 \int \frac{\frac{1}{2} (A b c-a C d)+\frac{1}{2} b (B c+(A-C) d) \tan (e+f x)+\frac{1}{2} (b c C+b B d-a C d) \tan ^2(e+f x)}{(a+b \tan (e+f x)) \sqrt{c+d \tan (e+f x)}} \, dx}{b}\\ &=\frac{2 C \sqrt{c+d \tan (e+f x)}}{b f}+\frac{2 \int \frac{\frac{1}{2} b (b B c+b (A-C) d+a (A c-c C-B d))-\frac{1}{2} b (A b c-a B c-b c C-a A d-b B d+a C d) \tan (e+f x)}{\sqrt{c+d \tan (e+f x)}} \, dx}{b \left (a^2+b^2\right )}+\frac{\left (\left (A b^2-a (b B-a C)\right ) (b c-a d)\right ) \int \frac{1+\tan ^2(e+f x)}{(a+b \tan (e+f x)) \sqrt{c+d \tan (e+f x)}} \, dx}{b \left (a^2+b^2\right )}\\ &=\frac{2 C \sqrt{c+d \tan (e+f x)}}{b f}+\frac{((A-i B-C) (c-i d)) \int \frac{1+i \tan (e+f x)}{\sqrt{c+d \tan (e+f x)}} \, dx}{2 (a-i b)}+\frac{((A+i B-C) (c+i d)) \int \frac{1-i \tan (e+f x)}{\sqrt{c+d \tan (e+f x)}} \, dx}{2 (a+i b)}+\frac{\left (\left (A b^2-a (b B-a C)\right ) (b c-a d)\right ) \operatorname{Subst}\left (\int \frac{1}{(a+b x) \sqrt{c+d x}} \, dx,x,\tan (e+f x)\right )}{b \left (a^2+b^2\right ) f}\\ &=\frac{2 C \sqrt{c+d \tan (e+f x)}}{b f}-\frac{(i (A+i B-C) (c+i d)) \operatorname{Subst}\left (\int \frac{1}{(-1+x) \sqrt{c+i d x}} \, dx,x,-i \tan (e+f x)\right )}{2 (a+i b) f}+\frac{((A-i B-C) (i c+d)) \operatorname{Subst}\left (\int \frac{1}{(-1+x) \sqrt{c-i d x}} \, dx,x,i \tan (e+f x)\right )}{2 (a-i b) f}+\frac{\left (2 \left (A b^2-a (b B-a C)\right ) (b c-a d)\right ) \operatorname{Subst}\left (\int \frac{1}{a-\frac{b c}{d}+\frac{b x^2}{d}} \, dx,x,\sqrt{c+d \tan (e+f x)}\right )}{b \left (a^2+b^2\right ) d f}\\ &=-\frac{2 \left (A b^2-a (b B-a C)\right ) \sqrt{b c-a d} \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{c+d \tan (e+f x)}}{\sqrt{b c-a d}}\right )}{b^{3/2} \left (a^2+b^2\right ) f}+\frac{2 C \sqrt{c+d \tan (e+f x)}}{b f}-\frac{((A+i B-C) (c+i d)) \operatorname{Subst}\left (\int \frac{1}{-1+\frac{i c}{d}-\frac{i x^2}{d}} \, dx,x,\sqrt{c+d \tan (e+f x)}\right )}{(a+i b) d f}+\frac{((i A+B-i C) (i c+d)) \operatorname{Subst}\left (\int \frac{1}{-1-\frac{i c}{d}+\frac{i x^2}{d}} \, dx,x,\sqrt{c+d \tan (e+f x)}\right )}{(a-i b) d f}\\ &=\frac{(A-i B-C) \sqrt{c-i d} \tanh ^{-1}\left (\frac{\sqrt{c+d \tan (e+f x)}}{\sqrt{c-i d}}\right )}{(i a+b) f}-\frac{(A+i B-C) \sqrt{c+i d} \tanh ^{-1}\left (\frac{\sqrt{c+d \tan (e+f x)}}{\sqrt{c+i d}}\right )}{(i a-b) f}-\frac{2 \left (A b^2-a (b B-a C)\right ) \sqrt{b c-a d} \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{c+d \tan (e+f x)}}{\sqrt{b c-a d}}\right )}{b^{3/2} \left (a^2+b^2\right ) f}+\frac{2 C \sqrt{c+d \tan (e+f x)}}{b f}\\ \end{align*}

Mathematica [A]  time = 0.673089, size = 233, normalized size = 1. \[ \frac{2 \sqrt{b} C \left (a^2+b^2\right ) \sqrt{c+d \tan (e+f x)}+b^{3/2} (b-i a) \sqrt{c-i d} (A-i B-C) \tanh ^{-1}\left (\frac{\sqrt{c+d \tan (e+f x)}}{\sqrt{c-i d}}\right )+b^{3/2} (b+i a) \sqrt{c+i d} (A+i B-C) \tanh ^{-1}\left (\frac{\sqrt{c+d \tan (e+f x)}}{\sqrt{c+i d}}\right )-2 \sqrt{b c-a d} \left (a (a C-b B)+A b^2\right ) \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{c+d \tan (e+f x)}}{\sqrt{b c-a d}}\right )}{b^{3/2} f \left (a^2+b^2\right )} \]

Antiderivative was successfully verified.

[In]

Integrate[(Sqrt[c + d*Tan[e + f*x]]*(A + B*Tan[e + f*x] + C*Tan[e + f*x]^2))/(a + b*Tan[e + f*x]),x]

[Out]

(b^(3/2)*((-I)*a + b)*(A - I*B - C)*Sqrt[c - I*d]*ArcTanh[Sqrt[c + d*Tan[e + f*x]]/Sqrt[c - I*d]] + b^(3/2)*(I
*a + b)*(A + I*B - C)*Sqrt[c + I*d]*ArcTanh[Sqrt[c + d*Tan[e + f*x]]/Sqrt[c + I*d]] - 2*(A*b^2 + a*(-(b*B) + a
*C))*Sqrt[b*c - a*d]*ArcTanh[(Sqrt[b]*Sqrt[c + d*Tan[e + f*x]])/Sqrt[b*c - a*d]] + 2*Sqrt[b]*(a^2 + b^2)*C*Sqr
t[c + d*Tan[e + f*x]])/(b^(3/2)*(a^2 + b^2)*f)

________________________________________________________________________________________

Maple [B]  time = 0.191, size = 3576, normalized size = 15.3 \begin{align*} \text{output too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c+d*tan(f*x+e))^(1/2)*(A+B*tan(f*x+e)+C*tan(f*x+e)^2)/(a+b*tan(f*x+e)),x)

[Out]

1/4/f/(a^2+b^2)/d*ln(d*tan(f*x+e)+c+(c+d*tan(f*x+e))^(1/2)*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)+(c^2+d^2)^(1/2))*C*(2
*(c^2+d^2)^(1/2)+2*c)^(1/2)*(c^2+d^2)^(1/2)*a-1/4/f/(a^2+b^2)/d*ln((c+d*tan(f*x+e))^(1/2)*(2*(c^2+d^2)^(1/2)+2
*c)^(1/2)-d*tan(f*x+e)-c-(c^2+d^2)^(1/2))*A*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)*a*c+1/4/f/(a^2+b^2)/d*ln(d*tan(f*x+e
)+c+(c+d*tan(f*x+e))^(1/2)*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)+(c^2+d^2)^(1/2))*B*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)*b*c+
1/4/f/(a^2+b^2)/d*ln((c+d*tan(f*x+e))^(1/2)*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)-d*tan(f*x+e)-c-(c^2+d^2)^(1/2))*B*(2
*(c^2+d^2)^(1/2)+2*c)^(1/2)*(c^2+d^2)^(1/2)*b-1/4/f/(a^2+b^2)/d*ln((c+d*tan(f*x+e))^(1/2)*(2*(c^2+d^2)^(1/2)+2
*c)^(1/2)-d*tan(f*x+e)-c-(c^2+d^2)^(1/2))*C*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)*(c^2+d^2)^(1/2)*a+1/4/f/(a^2+b^2)/d*
ln((c+d*tan(f*x+e))^(1/2)*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)-d*tan(f*x+e)-c-(c^2+d^2)^(1/2))*C*(2*(c^2+d^2)^(1/2)+2
*c)^(1/2)*a*c-1/4/f/(a^2+b^2)/d*ln(d*tan(f*x+e)+c+(c+d*tan(f*x+e))^(1/2)*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)+(c^2+d^
2)^(1/2))*C*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)*a*c-1/4/f/(a^2+b^2)/d*ln(d*tan(f*x+e)+c+(c+d*tan(f*x+e))^(1/2)*(2*(c
^2+d^2)^(1/2)+2*c)^(1/2)+(c^2+d^2)^(1/2))*A*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)*(c^2+d^2)^(1/2)*a+1/4/f/(a^2+b^2)/d*
ln(d*tan(f*x+e)+c+(c+d*tan(f*x+e))^(1/2)*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)+(c^2+d^2)^(1/2))*A*(2*(c^2+d^2)^(1/2)+2
*c)^(1/2)*a*c-1/4/f/(a^2+b^2)/d*ln(d*tan(f*x+e)+c+(c+d*tan(f*x+e))^(1/2)*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)+(c^2+d^
2)^(1/2))*B*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)*(c^2+d^2)^(1/2)*b+1/4/f/(a^2+b^2)*ln((c+d*tan(f*x+e))^(1/2)*(2*(c^2+
d^2)^(1/2)+2*c)^(1/2)-d*tan(f*x+e)-c-(c^2+d^2)^(1/2))*C*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)*b-1/4/f/(a^2+b^2)*ln(d*t
an(f*x+e)+c+(c+d*tan(f*x+e))^(1/2)*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)+(c^2+d^2)^(1/2))*B*(2*(c^2+d^2)^(1/2)+2*c)^(1
/2)*a-1/4/f/(a^2+b^2)*ln(d*tan(f*x+e)+c+(c+d*tan(f*x+e))^(1/2)*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)+(c^2+d^2)^(1/2))*
C*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)*b+1/4/f/(a^2+b^2)*ln(d*tan(f*x+e)+c+(c+d*tan(f*x+e))^(1/2)*(2*(c^2+d^2)^(1/2)+
2*c)^(1/2)+(c^2+d^2)^(1/2))*A*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)*b-1/4/f/(a^2+b^2)*ln((c+d*tan(f*x+e))^(1/2)*(2*(c^
2+d^2)^(1/2)+2*c)^(1/2)-d*tan(f*x+e)-c-(c^2+d^2)^(1/2))*A*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)*b-1/4/f/(a^2+b^2)/d*ln
((c+d*tan(f*x+e))^(1/2)*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)-d*tan(f*x+e)-c-(c^2+d^2)^(1/2))*B*(2*(c^2+d^2)^(1/2)+2*c
)^(1/2)*b*c-2/f*b/(a^2+b^2)/((a*d-b*c)*b)^(1/2)*arctan((c+d*tan(f*x+e))^(1/2)*b/((a*d-b*c)*b)^(1/2))*A*a*d+1/4
/f/(a^2+b^2)/d*ln((c+d*tan(f*x+e))^(1/2)*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)-d*tan(f*x+e)-c-(c^2+d^2)^(1/2))*A*(2*(c
^2+d^2)^(1/2)+2*c)^(1/2)*(c^2+d^2)^(1/2)*a-2/f/b/(a^2+b^2)/((a*d-b*c)*b)^(1/2)*arctan((c+d*tan(f*x+e))^(1/2)*b
/((a*d-b*c)*b)^(1/2))*a^3*C*d-2/f*b/(a^2+b^2)/((a*d-b*c)*b)^(1/2)*arctan((c+d*tan(f*x+e))^(1/2)*b/((a*d-b*c)*b
)^(1/2))*B*a*c-1/f/(a^2+b^2)/(2*(c^2+d^2)^(1/2)-2*c)^(1/2)*arctan((2*(c+d*tan(f*x+e))^(1/2)+(2*(c^2+d^2)^(1/2)
+2*c)^(1/2))/(2*(c^2+d^2)^(1/2)-2*c)^(1/2))*B*(c^2+d^2)^(1/2)*a-1/f/(a^2+b^2)/(2*(c^2+d^2)^(1/2)-2*c)^(1/2)*ar
ctan((2*(c+d*tan(f*x+e))^(1/2)+(2*(c^2+d^2)^(1/2)+2*c)^(1/2))/(2*(c^2+d^2)^(1/2)-2*c)^(1/2))*C*(c^2+d^2)^(1/2)
*b+1/f/(a^2+b^2)/(2*(c^2+d^2)^(1/2)-2*c)^(1/2)*arctan((2*(c+d*tan(f*x+e))^(1/2)+(2*(c^2+d^2)^(1/2)+2*c)^(1/2))
/(2*(c^2+d^2)^(1/2)-2*c)^(1/2))*C*b*c-1/f/(a^2+b^2)/(2*(c^2+d^2)^(1/2)-2*c)^(1/2)*arctan((2*(c+d*tan(f*x+e))^(
1/2)+(2*(c^2+d^2)^(1/2)+2*c)^(1/2))/(2*(c^2+d^2)^(1/2)-2*c)^(1/2))*A*b*c+1/f/(a^2+b^2)/(2*(c^2+d^2)^(1/2)-2*c)
^(1/2)*arctan((2*(c+d*tan(f*x+e))^(1/2)+(2*(c^2+d^2)^(1/2)+2*c)^(1/2))/(2*(c^2+d^2)^(1/2)-2*c)^(1/2))*B*a*c+1/
f/(a^2+b^2)/(2*(c^2+d^2)^(1/2)-2*c)^(1/2)*arctan(((2*(c^2+d^2)^(1/2)+2*c)^(1/2)-2*(c+d*tan(f*x+e))^(1/2))/(2*(
c^2+d^2)^(1/2)-2*c)^(1/2))*A*b*c-1/f/(a^2+b^2)/(2*(c^2+d^2)^(1/2)-2*c)^(1/2)*arctan(((2*(c^2+d^2)^(1/2)+2*c)^(
1/2)-2*(c+d*tan(f*x+e))^(1/2))/(2*(c^2+d^2)^(1/2)-2*c)^(1/2))*A*(c^2+d^2)^(1/2)*b+1/f/(a^2+b^2)/(2*(c^2+d^2)^(
1/2)-2*c)^(1/2)*arctan(((2*(c^2+d^2)^(1/2)+2*c)^(1/2)-2*(c+d*tan(f*x+e))^(1/2))/(2*(c^2+d^2)^(1/2)-2*c)^(1/2))
*B*(c^2+d^2)^(1/2)*a-1/f/(a^2+b^2)/(2*(c^2+d^2)^(1/2)-2*c)^(1/2)*arctan(((2*(c^2+d^2)^(1/2)+2*c)^(1/2)-2*(c+d*
tan(f*x+e))^(1/2))/(2*(c^2+d^2)^(1/2)-2*c)^(1/2))*C*b*c+1/f/(a^2+b^2)/(2*(c^2+d^2)^(1/2)-2*c)^(1/2)*arctan(((2
*(c^2+d^2)^(1/2)+2*c)^(1/2)-2*(c+d*tan(f*x+e))^(1/2))/(2*(c^2+d^2)^(1/2)-2*c)^(1/2))*C*(c^2+d^2)^(1/2)*b+2/f/(
a^2+b^2)/((a*d-b*c)*b)^(1/2)*arctan((c+d*tan(f*x+e))^(1/2)*b/((a*d-b*c)*b)^(1/2))*B*a^2*d+2/f/(a^2+b^2)/((a*d-
b*c)*b)^(1/2)*arctan((c+d*tan(f*x+e))^(1/2)*b/((a*d-b*c)*b)^(1/2))*C*a^2*c+1/f/(a^2+b^2)*d/(2*(c^2+d^2)^(1/2)-
2*c)^(1/2)*arctan((2*(c+d*tan(f*x+e))^(1/2)+(2*(c^2+d^2)^(1/2)+2*c)^(1/2))/(2*(c^2+d^2)^(1/2)-2*c)^(1/2))*A*a+
1/f/(a^2+b^2)*d/(2*(c^2+d^2)^(1/2)-2*c)^(1/2)*arctan((2*(c+d*tan(f*x+e))^(1/2)+(2*(c^2+d^2)^(1/2)+2*c)^(1/2))/
(2*(c^2+d^2)^(1/2)-2*c)^(1/2))*B*b-1/f/(a^2+b^2)*d/(2*(c^2+d^2)^(1/2)-2*c)^(1/2)*arctan((2*(c+d*tan(f*x+e))^(1
/2)+(2*(c^2+d^2)^(1/2)+2*c)^(1/2))/(2*(c^2+d^2)^(1/2)-2*c)^(1/2))*C*a+1/f/(a^2+b^2)*d/(2*(c^2+d^2)^(1/2)-2*c)^
(1/2)*arctan(((2*(c^2+d^2)^(1/2)+2*c)^(1/2)-2*(c+d*tan(f*x+e))^(1/2))/(2*(c^2+d^2)^(1/2)-2*c)^(1/2))*C*a-1/f/(
a^2+b^2)*d/(2*(c^2+d^2)^(1/2)-2*c)^(1/2)*arctan(((2*(c^2+d^2)^(1/2)+2*c)^(1/2)-2*(c+d*tan(f*x+e))^(1/2))/(2*(c
^2+d^2)^(1/2)-2*c)^(1/2))*A*a-1/f/(a^2+b^2)*d/(2*(c^2+d^2)^(1/2)-2*c)^(1/2)*arctan(((2*(c^2+d^2)^(1/2)+2*c)^(1
/2)-2*(c+d*tan(f*x+e))^(1/2))/(2*(c^2+d^2)^(1/2)-2*c)^(1/2))*B*b+2*C*(c+d*tan(f*x+e))^(1/2)/b/f-1/f/(a^2+b^2)/
(2*(c^2+d^2)^(1/2)-2*c)^(1/2)*arctan(((2*(c^2+d^2)^(1/2)+2*c)^(1/2)-2*(c+d*tan(f*x+e))^(1/2))/(2*(c^2+d^2)^(1/
2)-2*c)^(1/2))*B*a*c+2/f*b^2/(a^2+b^2)/((a*d-b*c)*b)^(1/2)*arctan((c+d*tan(f*x+e))^(1/2)*b/((a*d-b*c)*b)^(1/2)
)*A*c+1/f/(a^2+b^2)/(2*(c^2+d^2)^(1/2)-2*c)^(1/2)*arctan((2*(c+d*tan(f*x+e))^(1/2)+(2*(c^2+d^2)^(1/2)+2*c)^(1/
2))/(2*(c^2+d^2)^(1/2)-2*c)^(1/2))*A*(c^2+d^2)^(1/2)*b+1/4/f/(a^2+b^2)*ln((c+d*tan(f*x+e))^(1/2)*(2*(c^2+d^2)^
(1/2)+2*c)^(1/2)-d*tan(f*x+e)-c-(c^2+d^2)^(1/2))*B*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)*a

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c+d*tan(f*x+e))^(1/2)*(A+B*tan(f*x+e)+C*tan(f*x+e)^2)/(a+b*tan(f*x+e)),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c+d*tan(f*x+e))^(1/2)*(A+B*tan(f*x+e)+C*tan(f*x+e)^2)/(a+b*tan(f*x+e)),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{c + d \tan{\left (e + f x \right )}} \left (A + B \tan{\left (e + f x \right )} + C \tan ^{2}{\left (e + f x \right )}\right )}{a + b \tan{\left (e + f x \right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c+d*tan(f*x+e))**(1/2)*(A+B*tan(f*x+e)+C*tan(f*x+e)**2)/(a+b*tan(f*x+e)),x)

[Out]

Integral(sqrt(c + d*tan(e + f*x))*(A + B*tan(e + f*x) + C*tan(e + f*x)**2)/(a + b*tan(e + f*x)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (C \tan \left (f x + e\right )^{2} + B \tan \left (f x + e\right ) + A\right )} \sqrt{d \tan \left (f x + e\right ) + c}}{b \tan \left (f x + e\right ) + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c+d*tan(f*x+e))^(1/2)*(A+B*tan(f*x+e)+C*tan(f*x+e)^2)/(a+b*tan(f*x+e)),x, algorithm="giac")

[Out]

integrate((C*tan(f*x + e)^2 + B*tan(f*x + e) + A)*sqrt(d*tan(f*x + e) + c)/(b*tan(f*x + e) + a), x)